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This paper presents an approach to near-optimal target localization for small and micro
unmanned aerial vehicles using a family of precomputed parameterized trajectories. These
trajectories are precomputed for a set of nominal target locations uniformly distributed
over the sensor field of view and stored offline in a nondimensionalized form. Trajecto-
ries are parameterized and stored as a sequence of nondimensional waypoints. Upon target
detection, a trajectory corresponding to the nearest nominal target location is selected and
dimensionalized. An onboard navigation controller follows the dimensionalized trajectory.
Thus, trajectory generation occurs in near-constant time, which allows for fast adaptation
as the target state estimate is refined. Nondimensionalization of the trajectories with respect
to relative vehicle speed, sensor range, and sensor update rate allows the same table to be
used for various combinations of sensor package and vehicle or vehicle operating conditions.
Results of Monte Carlo simulations show the utility of the proposed approach.

I. Introduction

THIS paper describes a technique for fast, adaptive trajectory planning suitable for deployment on micro air vehicles
(MAVs) or autonomous submunitions. Missions envisioned for these vehicles typically include surveillance and

target tracking. The research was motivated by a combination of the limited computing power typically available
on these vehicles and the limited sensing which can be carried. The sensing limitations complicates the problem of
target tracking due to the limited information which can be obtained about the target. Generally, only the availability
of a bearing sensor, such as a monocular camera, is assumed. The target tracking problem is further complicated by
the nonlinearity of the measurement model.

The combination of limited information (a bearing to the target provides no information about the range to the
target) and the nonlinearity of the measurement model leads to a problem of dynamic observability.

This paper a) describes a framework for adaptive trajectory generation based on a nondimensionalized table
of optimal trajectories; b) describes the process of generating the trajectory table; c) presents simulation results
demonstrating the performance of this table-based approach to trajectory planning.

A. Motivation
Actually being able to complete a surveillance or target tracking mission using an MAV requires advances in

several fields, including though not limited to — flight control, sensing systems, obstacle avoidance, state estimation,
and trajectory planning. The small size of MAVs complicates the problem because of the limited power, sensing, and
computation which can be carried on board. Managing the tradeoffs requires careful system design.
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This research is concerned with target tracking and state estimation, specifically trajectory design to maximize the
information gained about the target. It is assumed that observer vehicle state is known precisely (for example, using
global positioning system (GPS)) and that the only sensing available is a monocular camera fixed to the observer
vehicle.

A monocular camera provides bearings to targets (or features) in the environment. A single bearing provided by a
monocular camera does not provide enough information to localize a target. Fusing bearings from multiple vantage
points, however, allows target localization by triangulating measurements. This problem of triangulation can readily
be cast as a nonlinear estimation problem and a recursive estimator such as an extended Kalman filter or unscented
Kalman filter (UKF) can be implemented.

When an estimator is implemented to solve the bearings-only target localization problem, the lack of range
information results in dynamic observability: multiple measurements, collected over time, from varying vantage
points, allow estimation of target state. Because of sensor noise, the geometry of observer positions and target
position greatly affects the accuracy of the target state estimate. This leads to the subject of this research: what is
the optimal trajectory which will localize a target with the smallest degree of uncertainty? Furthermore, how can
this trajectory be computed in real-time on computing hardware likely to be available on an MAV or autonomous
submunition?

Although the technology is general to many trajectory generation problems, the motivating mission is target state
estimation for a MAV. A schematic of a sequential target localization task (where the sequence of targets to be visited
is determined a priori) is shown in Fig. 1.

A human operator provides a sequence of targets and initial (possibly highly uncertain) estimates of target positions.
Each target has an associated risk zone which must be avoided to reduce the likelihood of detection and possible
loss of the observer vehicle. The vehicle has a limited field of view sensor, and must plan a sequence of trajectories
to minimize the uncertainty in the final state estimate of each target.

B. Fast, Adaptive Trajectory Selection
A schematic of a system for target tracking using an MAV is shown in Fig. 2. It consists of five parts as follows:

a) an aircraft, which is acted upon by external disturbances and has as input control commands; b) a flight control
system which enables controlled flight and has as input a desired trajectory; c) a trajectory generator; d) an estimator
which combines vehicle state information with measurements from a vision system to compute an estimate of target
state; e) a camera, which provides bearing measurements to the target.
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Fig. 1 Schematic of target localization task showing a sequence of targets to be tracked.
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Fig. 2 Block diagram of the system.

The problem of state estimation for autonomous vehicles such as MAVs has been studied in great detail and
seems to be well understood for these systems: indeed, several textbooks dealing with state estimation and target
tracking have been published [1–3]. Low-dimensional state estimation problems (such as target tracking) can easily
be implemented on relatively simple computers; planning trajectories which maximizes information gain is, however,
still a difficult problem.

This research proposes a method for fast, adaptive trajectory selection based on a table of trajectories for a set of
nominal target locations. Upon receipt of an initial (highly uncertain) target location, the trajectory corresponding
to the nearest nominal target location is selected and the observer vehicle begins to fly the trajectory. Bearing
measurements to the target are obtained and an estimator updates the target state estimate in real-time. As the target
state estimate improves, a new trajectory can be selected from the table. To increase the utility of this approach,
this paper describes a method for nondimensionalizing the table of trajectories based on the vehicle’s speed, sensor
range, and sensor update rate. This generalizes the table to different vehicle and sensor combinations. Two methods
of trajectory parameterization are described: one based on turn rate commands and one based on a sequence of
waypoints defined relative to the estimated target location.

The utility of this approach is demonstrated using Monte Carlo simulations of various target localization scenarios.
Target localization performance using the trajectory table is almost equivalent to direct computation of optimal
trajectories at vastly reduced online computational burden.

Portions of this work have appeared in [4,5]. This paper expands on previous work with additional numerical
results. The remainder of this paper is organized as follows: Sec. II discusses related work; Sec. III describes the
problem formulation; Sec. IV describes the trajectory table; Sec. V describes results of Monte Carlo simulations;
finally, Sec. VI presents concluding remarks.

II. Related Work
The field of robot motion planning is very broad, with a long history of study.Two notable textbooks are Latombe [6]

and LaValle [7].
Because of the dynamic observability caused by the bearings-only sensor, the trajectory followed by the observer

vehicle has an enormous effect on the quality of state estimates [8], and optimal trajectory generation for target
localization or tracking has become an active area of research [9–11].

Computing the optimal trajectory for a realistic vehicle model and realistic sensor models can become computa-
tionally prohibitive, and simplified models are generally used. For example, vehicle dynamics have been modeled as
a point mass with velocity and acceleration constraints [11] and sensor models have been linearized [12]. Solution
methods including dynamic programming [13] and direct collocation [14] have been used to generate the optimal
trajectories. These techniques still require fairly powerful computers and depending on the complexity of the model
(e.g., field of view constraints also increase complexity) may not be suitable for real-time operation on the processors
likely to be available on an MAV.

An approach that has been used successfully is the use of motion primitives which are connected to form a path [15].
Optimal motion planning using motion primitives has also been addressed [16]. Parameterized maneuver classes [17]
allow improved flexibility of the approach. The major difference between motion primitives (also called maneuver
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Fig. 3 Schematic of target localization task.

automatons) and the approach described in this paper is that rather than stitching together motion primitives, here a
single trajectory is selected from a table of possible trajectories.

III. Problem Formulation
A schematic of a target localization task is shown in Fig. 3. Observer vehicle and target positions are denoted as

xv and xt , respectively, in an inertial frame O. A highly uncertain initial target position is assumed to be given and
shown in the figure by the dashed line surrounding the target position. The target has a safety zone surrounding it,
denoted in the figure by the gray circle surrounding the target position. The safety zone ensures the observer vehicle
does not fly too close to the target, putting the observer vehicle at risk from target defense systems or collision. The
vision system obtains a bearing γ to the target in the vehicle body frame B. The vision system has a limited field of
view, defined by ±γmax. The maximum range of the sensor system is shown in the figure by the top arc at range R.
An estimation algorithm uses knowledge of vehicle position and the bearing measurements to compute an estimate
of target position xt = [xt yt ]T .

For this problem, the initial uncertainty of the target position is assumed to be unbiased in any direction. A
safety zone is included in this problem formulation as oftentimes targets for UAVs may be hostile or located in an
environment dangerous for a UAV, e.g., close to trees or other structures. As such the safety zone defines the area
with a large amount of risk for the UAV. In the case of an autonomous munition, the edge of the safety zone is where
a terminal guidance algorithm would take over control of the vehicle.

The problem of target state estimation is clearly critical in the target tracking problem. Solutions to this problem
have been well represented in the literature, and the focus here is on planning trajectories to maximize information
gained about the target. For completeness we briefly define sensor and system models.

A. Sensor and Vehicle Models
1. Monocular Vision System Model

The vision system obtains a bearing to the target as follows:

γ = arctan

(
yt − yv

xt − xv

)
− ψv + ν, (1)

where xt , and yt represent the location of the stationary target in the 2D plane; xv, yv , and ψv represent the vehicle
position and heading; and ν is uncorrelated zero-mean Gaussian random noise with covariance �ν . Maximum sensor
range is R and the sensor field of view is limited to −γmax � γ � γmax. The sensor sample period, which is the
inverse of the frame rate for the vision system, is Tf .
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2. Observer and Target Motion Model
The MAV is assumed to fly at constant altitude, and it is assumed to include an autopilot module which is

able to follow heading and velocity commands. For the purpose of planning a kinematic model this is an adequate
representation of vehicle dynamics, provided turn rate and acceleration constraints are accounted for in the trajectory.
The velocity of the observer vehicle is assumed to be a constant v given by

ẋv = v cos ψv (2)

ẏv = v sin ψv (3)

ψ̇v = u (4)

where u is the commanded turn rate (constrained by vehicle dynamics).
Since the target is assumed to be stationary, the target motion model is trivial as follows:

xt,k = xt,k−1 (5)

yt,k = yt,k−1 (6)

B. Target State Estimation
The purpose of the estimator is to compute an estimate x̂t of the state xt and an estimate P of the covariance of the

estimation error. The trajectory planning algorithm will find a path which minimizes the uncertainty P of the target
state estimate.

The bearing model given in Eq. (1) results in a nonlinear estimation problem, and the algorithm for a Sigma Point
Kalman Filter (i.e., a UKF) given in van der Merwe and Wan [18] is used to compute the target state estimate x̂t .

C. The Fisher Information Matrix
The idea of information was developed first in the research of thermodynamics and exists as a way to measure the

amount of “information” a known variable contains about a second unknown variable. In this research, the accuracy
of the state estimate is measured using the tracking error e = xt − x̂t . Minimizing the uncertainty P in this error is
equivalent to maximizing the information Y as the two are inverses of each other: Y = P−1.

To illustrate the use of Fisher Information in a target tracking application, consider a discrete time system with
trivial dynamics and a nonlinear measurement model

xk+1 = xk (7)

zk = h(xk) + vk (8)

where vk is uncorrelated zero-mean Gaussian random noise.
As shown by Ousingsawat and Campbell [11], the Fisher information matrix (FIM) for the estimation problem

associated with this system can be computed recursively

Yk = Yk−1 + HT
k �−1

v Hk (9)

where Hk is the Jacobian of the measurement model evaluated at time k, i.e.,

Hk = δ

δx
h(xk) (10)

For the vision model given by Eq. (1) the Jacobian of the sensor model with respect to the estimate of the target is

Hk =
[
− sin γk

rk

cos γk

rk

]
(11)

where rk = √
(xt − xv,k)2 + (yt − yv,k)2.
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For a single bearing measurement to a single target, �ν = σ 2
ν . Expanding (9) gives

Yk = Yk−1 + 1

r2
k σ 2

ν

[
sin2 γk − sin γk cos γk

− sin γk cos γk cos2 γk

]
(12)

Writing Eq. (12) as Yk = Yk−1 + �Yk , the information gained about a target over a trajectory can be expressed as

YK = Y0 +
K∑

k=1

�Yk (13)

This presentation of the FIM is applicable when the target is stationary and the FIM itself is representative of the
information gained about the position of the target.

The problem of computing a trajectory which maximizes information gained about a target can now be
summarized as

maximize c(YK) (14)

subject to trajectory constraints (15)

where YK is the FIM at the end of the trajectory and c is a function that maps Yk to a scalar: often a determinant is
used.

In simplified form, this problem can be solved analytically. However, when complications like safety zones, sensor
field of view limits, and more complex vehicle models are considered, the problem must be solved using numerical
optimization. With the limited computational power available on small UAVs, this size optimization problem generally
cannot be solved in real-time.

IV. A Table of Optimal Trajectories
As stated earlier, real-time solution of the trajectory optimization problem is generally intractable on the computing

hardware likely to be available on an MAV. To avoid this problem, a set of trajectories for representative target locations
are precomputed and then stored in a lookup table. To make the resulting table of trajectories generally applicable
to different sensors and vehicles, the problem is first nondimensionalized using sensor parameters and the observer
vehicle speed.

A. NonDimensionalization of the Problem
The problem is nondimensionalized to make the solution (the generated lookup tables of trajectories) more general.

By nondimensionalizing with respect to sensor parameters, two vehicles with different speeds or maximum turn rates
can use the same lookup table given the same or similar sensor packages. Further, it allows direct comparison of
different vehicle and sensor packages. Since the trajectory is parameterized as a sequence of waypoints, external
influences like wind can be compensated for by the trajectory-following controller, allowing a single lookup table to
be used in almost all conditions for a given sensor package.

1. Kinematics Model
To nondimensionalize the problem, vehicle kinematics are scaled with respect to sensor parameters. Distances

are scaled by sensor range R and time is scaled by the sensor frame sample time Tf :

˙̃xv = Tf

R
v cos ψv (16)

˙̃yv = Tf

R
v sin ψv (17)

˙̃
ψv = Tf u (18)
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2. Discrete Time Kinematics Model
A second-order approximation is used to generate a discrete time model for vehicle kinematics with sample time

Ts . The integration time is also scaled by the sensor frame sample time (i.e., �̃t = Ts/Tf ):

x̃k+1 = x̃k + Ts

Tf

⎡
⎢⎣

Tf

R
v cos ψ

Tf

R
v sin ψ

Tf u

⎤
⎥⎦ + 1

2

T 2
s

T 2
f

⎡
⎢⎢⎣

− T 2
f

R
vu sin ψ

T 2
f

R
vu cos ψ

0

⎤
⎥⎥⎦ (19)

The nondimensionalized discrete time vehicle kinematics are therefore

x̃k+1 = x̃k + Ts

⎡
⎢⎢⎢⎣

v

R
cos ψ

v

R
sin ψ

u

⎤
⎥⎥⎥⎦ + T 2

s

2

⎡
⎢⎢⎢⎣

− v

R
u sin ψ

v

R
u cos ψ

0

⎤
⎥⎥⎥⎦ (20)

3. Fisher Information Matrix
The FIM is based on the sensor measurement model, which also must be nondimensionalized. Nondimensional-

izing the sensor model with respect to the sensor range gives

H̃k =
[
−R sin γk

rk

R cos γk

rk

]
(21)

The nondimensionalized information gained about the target from a single measurement can now be expressed
as

Ỹk = Ỹk−1 + H̃
T

k �−1
ν H̃k (22)

Hence, the nondimensional form of Eq. (12) is

Ỹk = Ỹk−1 + R2

r2
k σ 2

ν

[
sin2 γk − sin γk cos γk

− sin γk cos γk cos2 γk

]
(23)

Again, assuming a stationary target and writing Eq. (23) as Ỹk = Ỹk−1 + �Ỹk , the nondimensional information
gained about a target over a trajectory can be expressed as

Ỹ = Ỹ0 +
K∑

k=1

�Ỹk (24)

where Ỹ0 = R2Y0, the nondimensionalized initial target information. Note that σν , the bearing measurement
uncertainty, is expressed in radians and is thus inherently nondimensional.

The nondimensional FIM will later be used in the cost function of the optimization problem.

B. Trajectory Parameterization
A common approach is to parameterize a trajectory based on a sequence of inputs. However, this has several

drawbacks. First, the number of turn-rate commands for a given trajectory varies with the initial distance from the
observer vehicle to the target, i.e., a shorter trajectory has fewer turn-rate commands. This requires either unused
space to be reserved in the lookup table, or complicated memory access algorithms to be employed. On the other
hand, a longer trajectory may have more than 200 turn-rate commands, which requires significant computational
time even on a workstation-class computer. A waypoint parameterization allows for easier optimization and storage
as every trajectory relies on a constant number of waypoints (here 10 waypoints are used). The waypoint trajectories
are also easier to non-dimensionalize and allow for easier implementation of the optimization constraints. Finally,
a trajectory derived from an input-based parameterization is typically followed in open loop, making it susceptible
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to disturbances such as wind. Of course the input sequence can be transformed to a trajectory in space that can be
followed using a trajectory-following controller, but this requires additional computation.

To generate a target localization table, the sensor field of view was uniformly discretized in the radial and angular
directions: i.e., a 10 × 10 polar grid was defined over the sensor field of view and a nominal target location was
defined at each grid point. This discretization is shown in Fig. 4. In this figure, there are N and M divisions in
the radial and axial directions, respectively. The optimal trajectory is generated for a potential target located at the
centroid of each cell. A schematic of the target localization tables showing nominal target locations and three sample
trajectories associated with three nominal locations is shown in Fig. 5.

The trajectories exist in nondimensional space as a sequence of 10 waypoints, X̃mn = [x̃mn,1, . . . , x̃mn,N ]. Each
waypoint x̃mn,N consists of an angle θ and a nondimensional distance r to the waypoint relative to the nominal target
location. Thus, relative to the target location, each waypoint exists at Cartesian coordinates

x̃n = rn cos θn (25)

ỹn = rn sin θn (26)
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Fig. 4 Discretization of the sensor field of view.
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where

θn = [0 . . . π] (27)

rn = r(θ) (28)

Each waypoint exists at a fixed angle from the target location and the distance of the waypoint from the target is
allowed to vary, subject to constraints. To prevent the observer from flying a path that forces the observer into the
risk zone after the path is flown, the final two waypoints are fixed to provide a pseudotangency constraint at the end
of the path. The final fixed waypoint ensures that the observer will not enter the risk zone at the end of the optimized
path. This is shown in Fig. 6.

Each trajectory consists of a sequence of 10 waypoints in nondimensional space. To compute a path in physical
space, the waypoints are first dimensionalized by multiplying by the sensor range

Xmn = RX̃mn = [xmn,1 xmn,2, . . . , xmn,10] (29)

Finally, a spline is used to compute the complete path (Fig. 7).
The trajectory generation problem for target (m, n) can be summarized as

minimize J (X̃mn) (30)

Fig. 6 Waypoints are defined by a distance r from the target location at fixed angles.

Fig. 7 Ten waypoints are interpolated and dimensionalized to form a complete path.
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subject to x̃k = f
(

X̃mn, Ts

v

R
, k

)
(31)

Rψ̇min

v
� κ̃k � Rψ̇max

v
(32)

where, again, the cost function J is disclosed in Sec. C; the vehicle path is computed using the interpolating function
f and κ̃k is the curvature of the path (nondimensionalized using the sensor range), constrained by vehicle turn-rate
limits.

Recall that the final (i.e., 10th) waypoint is on the edge of the risk zone, and thus forms an implicit constraint
on the trajectory. In addition, the 9th waypoint is constrained to ensure that the vehicle path is tangent to the risk
zone at the 10th waypoint. This ensures that the vehicle does not blunder into the risk zone at the conclusion of the
trajectory.

C. Cost Function
The cost function to be minimized is

J = (winfo + wfov)Jinfo, (33)

where winfo and wfov are weights associated with information gain and keeping the target in the field of view.

1. Information Cost
The information cost is computed using the FIM. Note that the target is assumed to be stationary. A scalar value

for information cost is then given by

Jinfo = log det Ỹ
−1

(34)

Jinfo = − log det Ỹ (35)

It is important to note that minimizing Ỹ
−1

is mathematically equivalent to maximizing Ỹ, or information about the

target. Alternatively, minimizing Ỹ
−1

is a way of minimizing the uncertainty in the target state estimate.

2. Field of View Weight
To keep the target in the field of view, a weight is computed based on the bearing to the target γk as follows:

wfov =
(

γk

γmax

)4

(36)

Although the field of view is also accounted for in the information cost, this term assists the optimization routine in
finding a valid solution. Initial optimizations that did not include this weight resulted in poor, or no, convergence of
the optimization.

D. Solution of Waypoint Parameterized Trajectories
To calculate solutions to the vector optimization problem defined by Eqs. (30–32), a minimization routine using

a gradient-based line search method was implemented.
To improve the generated trajectories, a pseudotangency constraint is imposed by fixing the distance of the last

two waypoints to the distance specified by a logarithmic spiral fitting the fixed final waypoint as well as the initial
location of the observer vehicle. The distance of a waypoint from the target vehicle defined by the logarithmic spiral
is given by

rn = rsafe exp(bθn) (37)

where

b = (log rk − log rsafe)

π
(38)

Because of the nature of the line search method, a feasible initial guess of a starting path is necessary to find a
solution. To quickly generate valid paths, the optimizer is initialized with a path defined by a logarithmic spiral from
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the initial observer position to the target position. The path which results from the optimization is a local optimum
near the initial guess.

E. Table Implementation
After solving the optimization problem for each of the nominal target locations, a set of trajectories is created.

These trajectories are then stored in a table to be used on a variety of vehicles. For ease of implementation, the
storage of the trajectories for this research has been in a two-dimensional table. Each trajectory is indexed by both a
nondimensional range and the bearing to each nominal target location. A trajectory can then be selected by matching
as closely as possible the nondimensional range and bearing to the actual target to those available in the lookup table.
This trajectory (i.e., sequence of nondimensionalized waypoints) is first dimensionalized into physical space and
then the onboard waypoint-following controller follows the resulting path.

Only half of the sensor field of view is covered by the trajectory tables shown in Fig. 5. Early results from the
optimization routines showed near-perfect reflection symmetry about the longitudinal axis of the vehicle. Thus, the
size of the lookup table can be made 50% smaller by exploiting this reflection symmetry. Targets in the left half-plane
of the observer vehicle are localized with a reflected trajectory from the lookup table.

F. Observer Vehicle and Sensor Variations
For the waypoint-based implementation, a trajectory-following controller allows vehicles of different speeds

to use the single trajectory stored in the lookup table to best localize a target. Since the table was generated by
nondimensionalizing the target localization problem using sensor range R, sensor update period Tf , and vehicle
speed V , intuition suggests that trajectories stored in the lookup table are optimal for any vehicle and sensor package
that has the same “observation number” as the generated trajectory table. This observation number relates the sensor
range R and the sample time Tf to the observer vehicle speed v as follows:

Nobs = (R/Tf )

v
(39)

Intuitively, Nobs is a measure of the number of measurements of the target that can be obtained before the target is
reached. Intuition also suggests, and simulations will later show, that two vehicles which share the same observation
number can use the same lookup table for selecting optimal target localization trajectories. Simulations will also
show that good, though suboptimal, trajectories can still be used for vehicles with differing observation numbers.

G. Target Localization
Target localization using the lookup table follows three steps:
1) An initial target location is passed to the table. If it is within the field of view, the trajectory associated with

the closed cell centroid is selected. If the initial target location is outside the field of view, the vehicle is
commanded to turn toward the initial given position of the target and fly until the target is seen.

2) The trajectory umn for the turn-rate-based implementation, or Xmn for the waypoint-based implementation,
is followed in open loop over a control horizon Tc. A target state estimate is computed using a Sigma Point
Kalman Filter [18,19]. The control horizon is dependent on the initial distance between the vehicle and the
target at the time of the first camera measurement. When the control horizon is reached, a new trajectory is
selected based on the current estimate of the target position.

3) The task is complete when the vehicle reaches the risk zone or the vehicle passes the target. This is defined
to happen when the observer vehicle reaches the last waypoint or turn-rate command defining the trajectory.
The next target in the sequence is selected, and the process repeats for all given targets.

In most target localization algorithms (e.g., [11,12]) the FIM is computed using the current estimate of target
position. Thus, the computed FIM is an estimate of the upper bound on the information that can be gained about the
target. Here, optimal paths are generated for a set of known nominal target locations, and the nominal target location
is used to compute the information cost. The information gain associated with a trajectory pulled from the table is
thus an approximation of the information which can be gained about an actual target, and the trajectory pulled from
the table is an approximation of the optimal trajectory which would be computed, given the exact knowledge of
target position.
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V. Simulation Results
Simulation results demonstrate the utility of the proposed approach. First, a simple target localization scenario is

used to demonstrate the use of the table. Second, the effect of vehicle and sensor variations on target localization is
examined by varying Nobs. Third, the effect of adaptation (i.e., selecting new trajectories as the target state estimate
is refined) is demonstrated. Finally, a Monte Carlo simulation is used to compare the cost and performance of
table-derived trajectories with those computed using direct optimization.

A. Using the Table
A sequence of images showing localization of a single target is given in Fig. 8. In the figure, true target location

is shown with ∗, estimated target location with + and associated error ellipse. The green line shows the current path
selected from the trajectory table; the blue line shows the path flown. The results show the target is initially within
the field of view of the sensor, and so a trajectory can be selected immediately. The vehicle follows the trajectory
while estimating target state for a control horizon Tc = 2 s and the target localization task is concluded as the vehicle
passes the target. Sensor noise is assumed to be Gaussian with σν = 0.0175 rad (i.e., 1◦). Using this parameterization
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Fig. 8 Snapshots of a single target localization run using the waypoint-parameterized trajectory table.
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and allowing for adaptation, the target was localized to an accuracy of 0.075 m using 0.13 s of CPU time. Direct
optimization resulted in a localization accuracy of 0.064 m using 2.2 s of CPU time. CPU times for this comparison
were measured on a desktop workstation with an Intel 2.4 GHz processor.

B. Observer Vehicle and Sensor Variations
Figure 9 shows that the trajectory created by dimensionalizing a set of 10 waypoints stored in the lookup table

and then interpolating generates essentially the same trajectory as a direct optimization in dimensional space. For
practical purposes, the trajectories are the same because the small variation in paths near the target occur when the
target is outside the field of view of the observer vehicle’s sensor package and, thus, is not providing any information
gain.

Because the trajectory is stored as a series of waypoints, a trajectory-following controller allows vehicles of
different speeds to use the single trajectory stored in the lookup table to best localize a target. Figure 10 shows that
different observer vehicle and sensor combinations can still fly near-optimal paths using the same table generated for
a single characteristic number Nobs. Flying at a slower airspeed and with a short-range sensor, the vehicle in Fig. 10a
has the same Nobs as the vehicle in Fig. 10b that is flying at a faster airspeed but also has a longer-range sensor. Both
vehicles can directly use the lookup table generated using the waypoint parameterization for the specific Nobs.

Fig. 9 Direct optimization in dimensional space and use of waypoints from a lookup table yield essentially the same
path.

Fig. 10 Different observer vehicle and sensor combinations yield observers with the same observation number and
can use the generated table directly.
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Fig. 11 Comparison of a directly optimized path vs the trajectory table for different observation numbers.

Simulations have further shown that observer setups having different Nobs from that of the table (e.g., due to
a difference in observer vehicle speed) can still perform accurate target localization using the trajectory from the
lookup table. Because the trajectories are stored as nondimensional waypoints, an observer vehicle setup with a
sensor of any range can dimensionalize the trajectories to a valid real space path. Figure 11 shows a path that
was optimized within dimensional space for a vehicle and sensor package with Nobs twice as large as the Nobs

of the trajectory table compared with the path from the trajectory table. Simulation results have shown that the
difference in cost is less than 0.5% when a path (i.e., sequence of waypoints) obtained from the trajectory table is
flown.

C. Monte Carlo Simulation: Table vs Direct Optimization
A series of simulations was conducted to evaluate the performance of the trajectory table vs a direct optimization.

For the simulations, a target was placed at a random location within the field of view of the sensor. The trajectory
corresponding to the nearest nominal target location was chosen and the observer aircraft flew and took measurements
along the entire trajectory. In this study, no adaptation of the trajectory occurred as the target state estimate was refined.
This was then compared to a trajectory optimized for the actual (random) target location. The ratio of optimization
cost from the lookup table trajectory to the optimization cost from a direct optimized trajectory vs target distance
is shown in Fig. 12. On average, a trajectory from the lookup table results in 81.0% the optimization cost as the
direct (true) optimized trajectory for a random target placed in the sensor field of view. It is important to note that
the optimization cost J is typically a negative number. A larger magnitude negative number, as provided by direct
optimization, in the optimization cost is thus preferable to a smaller magnitude negative number that is calculated
from the table trajectory. The 81% average “return” on optimization cost provided by the table trajectories is thus
suboptimal.

When comparing information gain alone, which is directly representative of the target localization performance
of the trajectory, the table lookup method performs extremely well. For the 500 simulations, the lookup table method
provides, on average, 90.0% the information gain as the true optimized path. This is because the field of view weight
in the optimized cost function, although necessary for the optimizer to find a solution, does not affect the information
gain in real life. As can be seen in Fig. 13, in some cases, the table lookup method performs significantly (greater
than 20%) better than the directly optimized path. In these cases, small differences in the trajectory result in the
observer vehicle obtaining a small increase in the number of measurement locations, where the target is within
the field of view of the sensor. It is important to note in these results that the difference in performance is due
mostly to difference in the actual target location and the nominal target location associated with the initial waypoint
trajectory.Additionally, adaptation was not considered in these simulations, which likely would significantly improve
the localization performance when using the waypoint-based lookup table trajectories.
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Fig. 12 Comparison of the cost for trajectories from the lookup table vs a direct optimized trajectory for 500 random
target locations.
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Fig. 13 Comparison of the information gain alone for trajectories from the lookup table vs a direct optimized
trajectory for 500 random target locations.

The table trajectory can also be retrieved from memory and dimensionalized online much faster than an optimiza-
tion can take place. Times for generating a sequence of 10 waypoints in dimensional space for a waypoint-following
controller are given in Table 1 and shows that, on average, the table lookup occurs more than 130 times faster than
the online optimization. It should be noted that the median optimization time of 1.28 s represents flight over 10–15%
of the sensor range for a nominal MAV. Thus, trajectories computed online are likely to be obsolete before they can
be flown. Note also that the CPU times reported were measured using a workstation-class computer with an AMD
Opteron processor clocked at 2.6 GHz. The computation time for online optimization will be significantly longer
using a processor carried onboard an MAV.
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Table 1 Comparison of CPU times for generating a
dimensional trajectory from the lookup table vs online
optimization using a 2.6 GHz AMD Opteron processor

Lookup table (s) Online optimization (s)

Minimum 0.0084 0.4822
Maximum 0.0403 2.5074
Median 0.0084 1.2779
Mean 0.0089 1.2364

D. Adaptation
As the vehicle follows a trajectory selection from the table, target state estimation occurs in real-time. By selecting

a new trajectory from the table when the estimated target state has changed, the target localization trajectory can
be made adaptive to changes. In this research, a particular trajectory is followed for a control horizon Tc and a
new trajectory is selected at the end of the control horizon. The benefits of adaptation is shown in Fig. 14. Without
adaptation, the lookup table method localizes the target within 0.16 m. With adaptation and a control horizon of 2 s,
the lookup table method localizes the target to within 0.075 m, or better than double the localization accuracy.

E. Discussion
Monte Carlo simulations have shown that the table trajectories will provide 90% of the information gain about a

target that the online optimization would. However, this result does not take into account the advantage of fast trajec-
tory adaptation that is possible when using the table trajectories. A study of required computational power showed
that the mean time required to compute a trajectory dropped from 1.24 s using true optimization to 0.0089 s using
the table trajectories on an AMD Opteron processor. Finally, allowing adaptation when using the table trajectories
doubles the accuracy of the localization task. Because of the minimal computation time required (0.0089 s mean)
to calculate a trajectory using the table, allowing for adaptation would have no significant effect on other observer
vehicle tasks.
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Fig. 14 Allowing for path adaptation as the target state estimate is refined improves the localization accuracy of the
lookup table provided paths.
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VI. Conclusion
This paper has described a method for fast adaptive trajectory generation for the problem of target localization

using MAVs.
The system is based on a precomputed lookup table of trajectories. A set of nominal target locations is defined

and trajectories which maximize information gain for each of the nominal target locations are computed offline. A
trajectory is represented as a sequence of waypoints nondimensionalized with respect to sensor range. An observation
number, which provides an approximation of the number of measurements of target state which can be obtained for
a particular choice of vehicle speed, sensor range, and sensor update rate, is defined.

This parameterized approach to trajectory generation for optimal target localization significantly reduces the
real-time computational load on a small- or micro- UAV’s processor, freeing capacity for other tasks such as state
estimation, navigation, or communication. Trajectories generated using the approach proposed here provided 90% of
the information gain of the directly optimized trajectory while running 137 times faster than the direct optimization.

The initial results of the waypoint parameterization also show good localization performance. Because the trajecto-
ries are stored as a finite set of 10 waypoints, the memory requirements for this parameterization are minimal, with the
entire trajectory table and associated information taking up only 10 kb of memory storage space. The waypoint-based
trajectories were then dimensionalized and compared with trajectories that were optimized directly in real-space. The
results of this comparison show that the two trajectories are nearly identical in real-space and the small differences
have little or no effect on the localization as the path differences occur when the target is outside of the field of
view of the sensor system. The waypoint-based trajectory was then dimensionalized for an observer vehicle with a
significantly different observation number and compared to a trajectory created through direct optimization. Again,
the two paths are nearly identical, with only small differences in some turns.

A Monte Carlo simulation consisting of 500 runs was performed using the waypoint-based trajectory table.
Localization results were then compared with those obtained by optimizing a trajectory for the random target
location. The dimensionalized waypoint-based table trajectories provide, on average, 81% of the information cost
and 90% of the information gain, when compared to the direct optimized trajectory for a random target location. A
few factors influence the localization performance and were detailed in the initial presentation of the results.

Finally, a comparison of computation times required for the trajectory design was done. This comparison shows that
direct optimization of a trajectory takes 1.28 s on average, or about 10–15% of the sensor range of the observer vehicle.
However, retrieving a nondimensional trajectory from the lookup table and then dimensionalizing the waypoints
occurs 137 times faster, or approximately 0.0084 s. This trajectory design time is constant for trajectories of any size,
from 25 to 100% of the sensor range.
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